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ABSTRACT

Position encoding recently has shown effective in the transformer architecture. It enables valuable
supervision for dependency modeling between elements at different positions of the sequence. In
this paper, we first investigate various methods to integrate positional information into the learning
process of transformer-based language models. Then, we propose a novel method named Rotary
Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the
proposed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates
the explicit relative position dependency in self-attention formulation. Notably, RoPE enables
valuable properties, including the flexibility of sequence length, decaying inter-token dependency
with increasing relative distances, and the capability of equipping the linear self-attention with
relative position encoding. Finally, we evaluate the enhanced transformer with rotary position
embedding, also called RoFormer, on various long text classification benchmark datasets. Our
experiments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical
analysis to explain some experimental results. RoFormer is already integrated into Huggingface:
https://huggingface.co/docs/transformers/model_doc/roformer.

Keywords Pre-trained Language Models · Position Information Encoding · Pre-training · Natural Language Processing.

1 Introduction

The sequential order of words is of great value to natural language understanding. Recurrent neural networks (RRNs)
based models encode tokens’ order by recursively computing a hidden state along the time dimension. Convolution
neural networks (CNNs) based models (CNNs) Gehring et al. [2017] were typically considered position-agnostic, but
recent work Islam et al. [2020] has shown that the commonly used padding operation can implicitly learn position
information. Recently, the pre-trained language models (PLMs), which were built upon the transformer Vaswani et al.
[2017], have achieved the state-of-the-art performance of various natural language processing (NLP) tasks, including
context representation learning Devlin et al. [2019], machine translation Vaswani et al. [2017], and language modeling
Radford et al. [2019], to name a few. Unlike, RRNs and CNNs-based models, PLMs utilize the self-attention mechanism
to semantically capture the contextual representation of a given corpus. As a consequence, PLMs achieve a significant
improvement in terms of parallelization over RNNs and improve the modeling ability of longer intra-token relations
compared to CNNs1.

1A stack of multiple CNN layers can also capture longer intra-token relation, here we only consider single layer setting.
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It is noteworthy that the self-attention architecture of the current PLMs has shown to be position-agnostic Yun et al.
[2020]. Following this claim, various approaches have been proposed to encode the position information into the
learning process. On one side, generated absolute position encoding through a pre-defined function Vaswani et al.
[2017] was added to the contextual representations, while a trainable absolute position encoding Gehring et al. [2017],
Devlin et al. [2019], Lan et al. [2020], Clark et al. [2020], Radford et al. [2019], Radford and Narasimhan [2018]. On
the other side, the previous work Parikh et al. [2016], Shaw et al. [2018], Huang et al. [2018], Dai et al. [2019], Yang
et al. [2019], Raffel et al. [2020], Ke et al. [2020], He et al. [2020], Huang et al. [2020] focuses on relative position
encoding, which typically encodes the relative position information into the attention mechanism. In addition to these
approaches, the authors of Liu et al. [2020] have proposed to model the dependency of position encoding from the
perspective of Neural ODE Chen et al. [2018a], and the authors of Wang et al. [2020] have proposed to model the
position information in complex space. Despite the effectiveness of these approaches, they commonly add the position
information to the context representation and thus render them unsuitable for the linear self-attention architecture.

In this paper, we introduce a novel method, namely Rotary Position Embedding(RoPE), to leverage the positional
information into the learning process of PLMS. Specifically, RoPE encodes the absolute position with a rotation matrix
and meanwhile incorporates the explicit relative position dependency in self-attention formulation. Note that the
proposed RoPE is prioritized over the existing methods through valuable properties, including the sequence length
flexibility, decaying inter-token dependency with increasing relative distances, and the capability of equipping the
linear self-attention with relative position encoding. Experimental results on various long text classification benchmark
datasets show that the enhanced transformer with rotary position embedding, namely RoFormer, can give better
performance compared to baseline alternatives and thus demonstrates the efficacy of the proposed RoPE.

In brief, our contributions are three-folds as follows:

• We investigated the existing approaches to the relative position encoding and found that they are mostly
built based on the idea of the decomposition of adding position encoding to the context representations. We
introduce a novel method, namely Rotary Position Embedding(RoPE), to leverage the positional information
into the learning process of PLMS. The key idea is to encode relative position by multiplying the context
representations with a rotation matrix with a clear theoretical interpretation.

• We study the properties of RoPE and show that it decays with the relative distance increased, which is desired
for natural language encoding. We kindly argue that previous relative position encoding-based approaches are
not compatible with linear self-attention.

• We evaluate the proposed RoFormer on various long text benchmark datasets. Our experiments show that it
consistently achieves better performance compared to its alternatives. Some experiments with pre-trained
language models are available on GitHub: https://github.com/ZhuiyiTechnology/roformer.

The remaining of the paper is organized as follows. We establish a formal description of the position encoding problem
in self-attention architecture and revisit previous works in Section (2). We then describe the rotary position encoding
(RoPE) and study its properties in Section (3). We report experiments in Section (4). Finally, we conclude this paper in
Section (5).

2 Background and Related Work

2.1 Preliminary

Let SN = {wi}Ni=1 be a sequence of N input tokens with wi being the ith element. The corresponding word embedding
of SN is denoted as EN = {xi}Ni=1, where xi ∈ Rd is the d-dimensional word embedding vector of token wi without
position information. The self-attention first incorporates position information to the word embeddings and transforms
them into queries, keys, and value representations.

qm = fq(xm,m)

kn = fk(xn, n)

vn = fv(xn, n),

(1)

where qm,kn and vn incorporate the mth and nth positions through fq, fk and fv, respectively. The query and key
values are then used to compute the attention weights, while the output is computed as the weighted sum over the value
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representation.

am,n =
exp(

q⊺
mkn√

d
)∑N

j=1 exp(
q⊺
mkj√
d
)

om =

N∑
n=1

am,nvn

(2)

The existing approaches of transformer-based position encoding mainly focus on choosing a suitable function to form
Equation (1).

2.2 Absolute position embedding

A typical choice of Equation (1) is

ft:t∈{q,k,v}(xi, i) := W t:t∈{q,k,v}(xi + pi), (3)

where pi ∈ Rd is a d-dimensional vector depending of the position of token xi. Previous work Devlin et al. [2019],
Lan et al. [2020], Clark et al. [2020], Radford et al. [2019], Radford and Narasimhan [2018] introduced the use of a set
of trainable vectors pi ∈ {pt}Lt=1, where L is the maximum sequence length. The authors of Vaswani et al. [2017] have
proposed to generate pi using the sinusoidal function.{

pi,2t = sin(k/100002t/d)

pi,2t+1 = cos(k/100002t/d)
(4)

in which pi,2t is the 2tth element of the d-dimensional vector pi. In the next section, we show that our proposed RoPE
is related to this intuition from the sinusoidal function perspective. However, instead of directly adding the position
to the context representation, RoPE proposes to incorporate the relative position information by multiplying with the
sinusoidal functions.

2.3 Relative position embedding

The authors of Shaw et al. [2018] applied different settings of Equation (1) as following:

fq(xm) := W qxm

fk(xn, n) := W k(xn + p̃k
r )

fv(xn, n) := W v(xn + p̃v
r)

(5)

where p̃k
r , p̃

v
r ∈ Rd are trainable relative position embeddings. Note that r = clip(m − n, rmin, rmax) represents the

relative distance between position m and n. They clipped the relative distance with the hypothesis that precise relative
position information is not useful beyond a certain distance. Keeping the form of Equation (3), the authors Dai et al.
[2019] have proposed to decompose q⊺

mkn of Equation (2) as

q⊺
mkn = x⊺

mW ⊺
qW kxn + x⊺

mW ⊺
qW kpn + p⊺

mW ⊺
qW kxn + p⊺

mW ⊺
qW kpn, (6)

the key idea is to replace the absolute position embedding pn with its sinusoid-encoded relative counterpart p̃m−n,
while the absolute position pm in the third and fourth term with two trainable vectors u and v independent of the query
positions. Further, W k is distinguished for the content-based and location-based key vectors xn and pn, denoted as
W k and W̃ k, resulting in:

q⊺
mkn = x⊺

mW ⊺
qW kxn + x⊺

mW ⊺
qW̃ kp̃m−n + u⊺W ⊺

qW kxn + v⊺W ⊺
qW̃ kp̃m−n (7)

It is noteworthy that the position information in the value term is removed by setting fv(xj) := W vxj . Later work
Raffel et al. [2020], He et al. [2020], Ke et al. [2020], Huang et al. [2020] followed these settings by only encoding
the relative position information into the attention weights. However, the authors of Raffel et al. [2020] reformed
Equation (6) as:

q⊺
mkn = x⊺

mW ⊺
qW kxn + bi,j (8)

where bi,j is a trainable bias. The authors of Ke et al. [2020] investigated the middle two terms of Equation (6) and
found little correlations between absolute positions and words. The authors of Raffel et al. [2020] proposed to model a
pair of words or positions using different projection matrices.

q⊺
mkn = x⊺

mW ⊺
qW kxn + p⊺

mU⊺
qUkpn + bi,j (9)
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The authors of He et al. [2020] argued that the relative positions of two tokens could only be fully modeled using
the middle two terms of Equation (6). As a consequence, the absolute position embeddings pm and pn were simply
replaced with the relative position embeddings p̃m−n:

q⊺
mkn = x⊺

mW ⊺
qW kxn + x⊺

mW ⊺
qW kp̃m−n + p̃⊺

m−nW
⊺
qW kxn (10)

A comparison of the four variants of the relative position embeddings Radford and Narasimhan [2018] has shown
that the variant similar to Equation (10) is the most efficient among the other three. Generally speaking, all these
approaches attempt to modify Equation (6) based on the decomposition of Equation (3) under the self-attention settings
in Equation (2), which was originally proposed in Vaswani et al. [2017]. They commonly introduced to directly add
the position information to the context representations. Unlikely, our approach aims to derive the relative position
encoding from Equation (1) under some constraints. Next, we show that the derived approach is more interpretable by
incorporating relative position information with the rotation of context representations.

3 Proposed approach

In this section, we discuss the proposed rotary position embedding (RoPE). We first formulate the relative position
encoding problem in Section (3.1), we then derive the RoPE in Section (3.2) and investigate its properties in Section (3.3).

3.1 Formulation

Transformer-based language modeling usually leverages the position information of individual tokens through a self-
attention mechanism. As can be observed in Equation (2), q⊺

mkn typically enables knowledge conveyance between
tokens at different positions. In order to incorporate relative position information, we require the inner product of query
qm and key kn to be formulated by a function g, which takes only the word embeddings xm, xn, and their relative
position m− n as input variables. In other words, we hope that the inner product encodes position information only in
the relative form:

⟨fq(xm,m), fk(xn, n)⟩ = g(xm,xn,m− n). (11)

The ultimate goal is to find an equivalent encoding mechanism to solve the functions fq(xm,m) and fk(xn, n) to
conform the aforementioned relation.

3.2 Rotary position embedding

3.2.1 A 2D case

We begin with a simple case with a dimension d = 2. Under these settings, we make use of the geometric property
of vectors on a 2D plane and its complex form to prove (refer Section (3.4.1) for more details) that a solution to our
formulation Equation (11) is:

fq(xm,m) = (W qxm)eimθ

fk(xn, n) = (W kxn)e
inθ

g(xm,xn,m− n) = Re[(W qxm)(W kxn)
∗ei(m−n)θ]

(12)

where Re[·] is the real part of a complex number and (W kxn)
∗ represents the conjugate complex number of (W kxn).

θ ∈ R is a preset non-zero constant. We can further write f{q,k} in a multiplication matrix:

f{q,k}(xm,m) =

(
cosmθ − sinmθ
sinmθ cosmθ

)(
W

(11)
{q,k} W

(12)
{q,k}

W
(21)
{q,k} W

(22)
{q,k}

)(
x
(1)
m

x
(2)
m

)
(13)

where (x
(1)
m , x

(2)
m ) is xm expressed in the 2D coordinates. Similarly, g can be viewed as a matrix and thus enables the

solution of formulation in Section (3.1) under the 2D case. Specifically, incorporating the relative position embedding
is straightforward: simply rotate the affine-transformed word embedding vector by amount of angle multiples of its
position index and thus interprets the intuition behind Rotary Position Embedding.
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3.2.2 General form

In order to generalize our results in 2D to any xi ∈ Rd where d is even, we divide the d-dimension space into d/2
sub-spaces and combine them in the merit of the linearity of the inner product, turning f{q,k} into:

f{q,k}(xm,m) = Rd
Θ,mW {q,k}xm (14)

where

Rd
Θ,m =



cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθd/2 − sinmθd/2
0 0 0 0 · · · sinmθd/2 cosmθd/2


(15)

is the rotary matrix with pre-defined parameters Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]}. A graphic illustration
of RoPE is shown in Figure (1). Applying our RoPE to self-attention in Equation (2), we obtain:

q⊺
mkn = (Rd

Θ,mW qxm)⊺(Rd
Θ,nW kxn) = x⊺W qR

d
Θ,n−mW kxn (16)

where Rd
Θ,n−m = (Rd

Θ,m)⊺Rd
Θ,n. Note that Rd

Θ is an orthogonal matrix, which ensures stability during the process of
encoding position information. In addition, due to the sparsity of Rd

Θ, applying matrix multiplication directly as in
Equation (16) is not computationally efficient; we provide another realization in theoretical explanation.

In contrast to the additive nature of position embedding method adopted in the previous works, i.e., Equations (3)
to (10), our approach is multiplicative. Moreover, RoPE naturally incorporates relative position information through
rotation matrix product instead of altering terms in the expanded formulation of additive position encoding when applied
with self-attention.

Enhanced

Transformer

with

Rotary

Position

Embedding

Position

1

2

5

3

4

6

θ1 θ2 θd/2-1 θd/2

mθ1

Query / Key

x1

x2
(x1, x2)

m
Position

x'1

x'2

(x'1, x'2)

Position Encoded Query / Key

Query / Key
Position Encoded Query / Key

θ1
Constant

d=2

Figure 1: Implementation of Rotary Position Embedding(RoPE).

3.3 Properties of RoPE

Long-term decay: Following Vaswani et al. [2017], we set θi = 10000−2i/d. One can prove that this setting provides
a long-term decay property (refer to Section (3.4.3) for more details), which means the inner-product will decay when
the relative position increase. This property coincides with the intuition that a pair of tokens with a long relative distance
should have less connection.

RoPE with linear attention: The self-attention can be rewritten in a more general form.
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Attention(Q,K,V)m =

∑N
n=1 sim(qm,kn)vn∑N
n=1 sim(qm,kn)

. (17)

The original self-attention chooses sim(qm,kn) = exp(q⊺
mkn/

√
d). Note that the original self-attention should

compute the inner product of query and key for every pair of tokens, which has a quadratic complexity O(N2). Follow
Katharopoulos et al. [2020], the linear attentions reformulate Equation (17) as

Attention(Q,K,V )m =

∑N
n=1 ϕ(qm)⊺φ(kn)vn∑N
n=1 ϕ(qm)⊺φ(kn)

, (18)

where ϕ(·), φ(·) are usually non-negative functions. The authors of Katharopoulos et al. [2020] have proposed
ϕ(x) = φ(x) = elu(x)+1 and first computed the multiplication between keys and values using the associative property
of matrix multiplication. A softmax function is used in Shen et al. [2021] to normalize queries and keys separately
before the inner product, which is equivalent to ϕ(qi) = softmax(qi) and ϕ(kj) = exp(kj). For more details about
linear attention, we encourage readers to refer to original papers. In this section, we focus on discussing incorporating
RoPE with Equation (18). Since RoPE injects position information by rotation, which keeps the norm of hidden
representations unchanged, we can combine RoPE with linear attention by multiplying the rotation matrix with the
outputs of the non-negative functions.

Attention(Q,K,V)m =

∑N
n=1

(
Rd

Θ,mϕ(qm)
)⊺(

Rd
Θ,nφ(kn)

)
vn∑N

n=1 ϕ(qm)⊺φ(kn)
. (19)

It is noteworthy that we keep the denominator unchanged to avoid the risk of dividing zero, and the summation in
the numerator could contain negative terms. Although the weights for each value vi in Equation (19) are not strictly
probabilistic normalized, we kindly argue that the computation can still model the importance of values.

3.4 Theoretical Explanation

3.4.1 Derivation of RoPE under 2D

Under the case of d = 2, we consider two-word embedding vectors xq, xk corresponds to query and key and their
position m and n, respectively. According to eq. (1), their position-encoded counterparts are:

qm = fq(xq,m),

kn = fk(xk, n),
(20)

where the subscripts of qm and kn indicate the encoded positions information. Assume that there exists a function g
that defines the inner product between vectors produced by f{q,k}:

q⊺
mkn = ⟨fq(xm,m), fk(xn, n)⟩ = g(xm,xn, n−m), (21)

we further require below initial condition to be satisfied:

q = fq(xq, 0),

k = fk(xk, 0),
(22)

which can be read as the vectors with empty position information encoded. Given these settings, we attempt to find a
solution of fq, fk. First, we take advantage of the geometric meaning of vector in 2D and its complex counter part,
decompose functions in Equations (20) and (21) into:

fq(xq,m) = Rq(xq,m)eiΘq(xq,m),

fk(xk, n) = Rk(xk, n)e
iΘk(xk,n),

g(xq,xk, n−m) = Rg(xq,xk, n−m)eiΘg(xq,xk,n−m),

(23)

where Rf , Rg and Θf , Θg are the radical and angular components for f{q,k} and g, respectively. Plug them into
Equation (21), we get the relation:

Rq(xq,m)Rk(xk, n) = Rg(xq,xk, n−m),

Θk(xk, n)−Θq(xq,m) = Θg(xq,xk, n−m),
(24)
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with the corresponding initial condition as:

q = ∥q∥eiθq = Rq(xq, 0)e
iΘq(xq,0),

k = ∥k∥eiθk = Rk(xk, 0)e
iΘk(xk,0),

(25)

where ∥q∥, ∥k∥ and θq , θk are the radial and angular part of q and k on the 2D plane.

Next, we set m = n in Equation (24) and take into account initial conditions in Equation (25):

Rq(xq,m)Rk(xk,m) = Rg(xq,xk, 0) = Rq(xq, 0)Rk(xk, 0) = ∥q∥∥k∥, (26a)
Θk(xk,m)−Θq(xq,m) = Θg(xq,xk, 0) = Θk(xk, 0)−Θq(xq, 0) = θk − θq. (26b)

On one hand, from, a straightforward solution of Rf could be formed from Equation (26a) :

Rq(xq,m) = Rq(xq, 0) = ∥q∥
Rk(xk, n) = Rk(xk, 0) = ∥k∥

Rg(xq,xk, n−m) = Rg(xq,xk, 0) = ∥q∥∥k∥
(27)

which interprets the radial functions Rq , Rk and Rg are independent from the position information. On the other hand,
as can be noticed in Equation (26b), Θq(xq,m)− θq = Θk(xk,m)− θk indicates that the angular functions does not
dependent on query and key, we set them to Θf := Θq = Θk and term Θf (x{q,k},m)− θ{q,k} is a function of position
m and is independent of word embedding x{q,k}, we denote it as ϕ(m), yielding:

Θf (x{q,k},m) = ϕ(m) + θ{q,k}, (28)

Further, by plugging n = m+ 1 to Equation (24) and consider the above equation, we can get:

ϕ(m+ 1)− ϕ(m) = Θg(xq,xk, 1) + θq − θk, (29)

Since RHS is a constant irrelevant to m, ϕ(m) with continuous integer inputs produce an arithmetic progression:

ϕ(m) = mθ + γ, (30)

where θ, γ ∈ R are constants and θ is non-zero. To summarize our solutions from Equations (27) to (30):

fq(xq,m) = ∥q∥eiθq+mθ+γ = qei(mθ+γ),

fk(xk, n) = ∥k∥eiθk+nθ+γ = kei(nθ+γ).
(31)

Note that we do not apply any constrains to fq and fk of Equation (22), thus fq(xm, 0) and fk(xn, 0) are left to choose
freely. To make our results comparable to Equation (3), we define:

q = fq(xm, 0) = W qxn,

k = fk(xn, 0) = W kxn.
(32)

Then, we simply set γ = 0 in Equation (31) of the final solution:

fq(xm,m) = (W qxm)eimθ,

fk(xn, n) = (W kxn)e
inθ.

(33)

3.4.2 Computational efficient realization of rotary matrix multiplication

Taking the advantage of the sparsity of Rd
Θ,m in Equation (15), a more computational efficient realization of a

multiplication of Rd
Θ and x ∈ Rd is:

Rd
Θ,mx =



x1

x2

x3

x4

...
xd−1

xd


⊗



cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2


+



−x2

x1

−x4

x3

...
−xd

xd−1


⊗



sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2


(34)
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Figure 2: Long-term decay of RoPE.

3.4.3 Long-term decay of RoPE

We can group entries of vectors q = W qxm and k = W kxn in pairs, and the inner product of RoPE in Equation (16)
can be written as a complex number multiplication.

(Rd
Θ,mW qxm)⊺(Rd

Θ,nW kxn) = Re

[ d/2−1∑
i=0

q[2i:2i+1]k
∗
[2i:2i+1]e

i(m−n)θi

]
(35)

where q[2i:2i+1] represents the 2ith to (2i + 1)th entries of q. Denote hi = q[2i:2i+1]k
∗
[2i:2i+1] and Sj =∑j−1

i=0 ei(m−n)θi , and let hd/2 = 0 and S0 = 0, we can rewrite the summation using Abel transformation

d/2−1∑
i=0

q[2i:2i+1]k
∗
[2i:2i+1]e

i(m−n)θi =

d/2−1∑
i=0

hi(Si+1 − Si) = −
d/2−1∑
i=0

Si+1(hi+1 − hi). (36)

Thus,

∣∣∣∣ d/2−1∑
i=0

q[2i:2i+1]k
∗
[2i:2i+1]e

i(m−n)θi

∣∣∣∣ = ∣∣∣∣ d/2−1∑
i=0

Si+1(hi+1 − hi)

∣∣∣∣
≤

d/2−1∑
i=0

|Si+1||(hi+1 − hi)|

≤
(
max

i
|hi+1 − hi|

) d/2−1∑
i=0

|Si+1|

(37)

Note that the value of 1
d/2

∑d/2
i=1 |Si| decay with the relative distance m− n increases by setting θi = 10000−2i/d, as

shown in Figure (2).

4 Experiments and Evaluation

We evaluate the proposed RoFormer on various NLP tasks as follows. We validate the performance of the proposed
solution on machine translation task Section (4.1). Then, we compare our RoPE implementation with BERTDevlin
et al. [2019] during the pre-training stage in Section (4.2). Based on the pre-trained model, in Section (4.3), we further
carry out evaluations across different downstream tasks from GLUE benchmarksSingh et al. [2018]. In Addition, we
conduct experiments using the proposed RoPE with the linear attention of PerFormer Choromanski et al. [2020] in
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Table 1: The proposed RoFormer gives better BLEU scores compared to its baseline alternative Vaswani et al. [2017]
on the WMT 2014 English-to-German translation taskBojar et al. [2014].

Model BLEU

Transformer-baseVaswani et al. [2017] 27.3
RoFormer 27.5

Section (4.4). By the end, additional tests on Chinese data are included in Section (4.5). All the experiments were run
on two cloud severs with 4 x V100 GPUs.

4.1 Machine Translation

We first demonstrate the performance of RoFormer on sequence-to-sequence language translation tasks.

4.1.1 Experimental Settings

We choose the standard WMT 2014 English-German datasetBojar et al. [2014], which consists of approximately 4.5
million sentence pairs. We compare to the transformer-based baseline alternative Vaswani et al. [2017].

4.1.2 Implementation details

We carry out some modifications on self-attention layer of the baseline model Vaswani et al. [2017] to enable RoPE to
its learning process. We replicate the setup for English-to-German translation with a vocabulary of 37k based on a joint
source and target byte pair encoding(BPE)Sennrich et al. [2015]. During the evaluation, a single model is obtained
by averaging the last 5 checkpoints. The result uses beam search with a beam size of 4 and length penalty 0.6. We
implement the experiment in PyTorch in the fairseq toolkit (MIT License)Ott et al. [2019]. Our model is optimized
with the Adam optimizer using β1 = 0.9, β2 = 0.98, learning rate is increased linearly from 1e− 7 to 5e− 4 and then
decayed proportionally to the inverse square root of the step number. Label smoothing with 0.1 is also adopted. We
report the BLEUPapineni et al. [2002] score on the test set as the final metric.

4.1.3 Results

We train the baseline model and our RoFormer under the same settings and report the results in Table (1). As can be
seen, our model gives better BLEU scores compared to the baseline Transformer.

4.2 Pre-training Language Modeling

The second experiment is to validate the performance of our proposal in terms of learning contextual representations. To
achieve this, we replace the original sinusoidal position encoding of BERT with our RoPE during the pre-training step.

4.2.1 Experimental Settings

We use the BookCorpus Zhu et al. [2015] and the Wikipedia Corpus Foundation [2021] from Huggingface Datasets
library (Apache License 2.0) for pre-training. The corpus is further split into train and validation sets at 8:2 ratio. We
use the masked language-modeling (MLM) loss values of the training process as an evaluation metric. The well-known
BERT Devlin et al. [2019] is adopted as our baseline model. Note that we use bert-base-uncased in our experiments.

4.2.2 Implementation details

For RoFormer, we replace the sinusoidal position encoding in the self-attention block of the baseline model with our
proposed RoPE and realizes self-attention according to Equation (16). We train both BERT and RoFormer with batch
size 64 and maximum sequence length of 512 for 100k steps. AdamW Loshchilov and Hutter [2017] is used as the
optimizer with learning rate 1e-5.

4.2.3 Results

The MLM loss during pre-training is shown on the left plot of Figure (3). Compare to the vanilla BERT, RoFormer
experiences faster convergence.
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Figure 3: Evaluation of RoPE in language modeling pre-training. Left: training loss for BERT and RoFormer. Right:
training loss for PerFormer with and without RoPE.

4.3 Fine-tuning on GLUE tasks

Consistent with the previous experiments, we fine-tune the weights of our pre-trained RoFormer across various GLUE
tasks in order to evaluate its generalization ability on the downstream NLP tasks.

4.3.1 Experimental Settings

We look at several datasets from GLUE, i.e. MRPC Dolan and Brockett [2005], SST-2 Socher et al. [2013], QNLI
Rajpurkar et al. [2016], STS-B Al-Natsheh [2017], QQP Chen et al. [2018b] and MNLI Williams et al. [2018]. We use
F1-score for MRPC and QQP dataset, spearman correlation for STS-B, and accuracy for the remaining as the evaluation
metrics.

4.3.2 Implementation details

We use Huggingface Transformers library (Apache License 2.0)Wolf et al. [2020] to fine-tune each of the aforementioned
downstream tasks for 3 epochs, with a maximum sequence length of 512, batch size of 32 and learning rates 2,3,4,5e-5.
Following Devlin et al. [2019], we report the best-averaged results on the validation set.

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Model MRPC SST-2 QNLI STS-B QQP MNLI(m/mm)

BERTDevlin et al. [2019] 88.9 93.5 90.5 85.8 71.2 84.6/83.4
RoFormer 89.5 90.7 88.0 87.0 86.4 80.2/79.8

4.3.3 Results

The evaluation results of the fine-tuning tasks are reported in Table (2). As can be seen, RoFormer can significantly
outperform BERT in three out of six datasets, and the improvements are considerable.

4.4 Performer with RoPE

Performer Choromanski et al. [2020] introduces an alternative attention mechanism, linear attention, which is designed
to avoid quadratic computation cost that scales with input sequence length. As discussed in Section (3.3), the proposed
RoPE can be easily implemented in the PerFormer model to realize the relative position encoding while keeping its
linearly scaled complexity in self-attention. We demonstrate its performance with the pre-training task of language
modeling.
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4.4.1 Implementation details

We carry out tests on the Enwik8 dataset Mahoney [2006], which is from English Wikipedia that includes markup,
special characters and text in other languages in addition to English text. We incorporate RoPE into the 12 layer
char-based PerFormer with 768 dimensions and 12 heads2. To better illustrate the efficacy of RoPE, we report the loss
curves of the pre-training process with and without RoPE under the same settings, i.e., learning rate 1e-4, batch size
128 and a fixed maximum sequence length of 1024, etc.

4.4.2 Results

As shown on the right plot of Figure (3), substituting RoPE into Performer leads to rapid convergence and lower loss
under the same amount of training steps. These improvements, in addition to the linear complexity, make Performer
more attractive.

4.5 Evaluation on Chinese Data

In addition to experiments on English data, we show additional results on Chinese data. To validate the performance of
RoFormer on long texts, we conduct experiments on long documents whose length exceeds 512 characters.

4.5.1 Implementation

In these experiments, we carried out some modifications on WoBERT Su [2020] by replacing the absolute position
embedding with our proposed RoPE. As a cross-comparison with other pre-trained Transformer-based models in
Chinese, i.e. BERT Devlin et al. [2019], WoBERT Su [2020], and NEZHA Wei et al. [2019], we tabulate their
tokenization level and position embedding information in Table (3).

Table 3: Cross-comparison between our RoFormer and other pre-trained models on Chinese data. ’abs’ and ’rel’
annotates absolute position embedding and relative position embedding, respectively.

Model BERTDevlin et al. [2019] WoBERTSu [2020] NEZHAWei et al. [2019] RoFormer

Tokenization level char word char word
Position embedding abs. abs. rel. RoPE

4.5.2 Pre-training

We pre-train RoFormer on approximately 34GB of data collected from Chinese Wikipedia, news and forums. The
pre-training is carried out in multiple stages with changing batch size and maximum input sequence length in order to
adapt the model to various scenarios. As shown in Table (4), the accuracy of RoFormer elevates with an increasing
upper bound of sequence length, which demonstrates the ability of RoFormer in dealing with long texts. We claim that
this is the attribute to the excellent generalizability of the proposed RoPE.

Table 4: Pre-training strategy of RoFormer on Chinese dataset. The training procedure is divided into various consecutive
stages. In each stage, we train the model with a specific combination of maximum sequence length and batch size.

Stage Max seq length Batch size Training steps Loss Accuracy

1 512 256 200k 1.73 65.0%
2 1536 256 12.5k 1.61 66.8%
3 256 256 120k 1.75 64.6%
4 128 512 80k 1.83 63.4%
5 1536 256 10k 1.58 67.4%
6 512 512 30k 1.66 66.2%

4.5.3 Downstream Tasks & Dataset

We choose Chinese AI and Law 2019 Similar Case Matching (CAIL2019-SCM)Xiao et al. [2019] dataset to illustrate
the ability of RoFormer in dealing with long texts, i.e., semantic text matching. CAIL2019-SCM contains 8964 triplets

2For this experiment, we adopt code (MIT License) from https://github.com/lucidrains/performer-pytorch

11

https://github.com/lucidrains/performer-pytorch


RoFormer

of cases published by the Supreme People’s Court of China. The input triplet, denoted as (A, B and C), are fact
descriptions of three cases. The task is to predict whether the pair (A, B) is closer than (A, C) under a predefined
similarity measure. Note that existing methods mostly cannot perform significantly on CAIL2019-SCM dataset due to
the length of documents (i.e., mostly more than 512 characters). We split train, validation and test sets based on the
well-known ratio 6:2:2.

4.5.4 Results

We apply the pre-trained RoFormer model to CAIL2019-SCM with different input lengths. The model is compared with
the pre-trained BERT and WoBERT model on the same pre-training data, as shown in Table (5). With short text cut-offs,
i.e., 512, the result from RoFormer is comparable to WoBERT and is slightly better than the BERT implementation.
However, when increasing the maximum input text length to 1024, RoFormer outperforms WoBERT by an absolute
improvement of 1.5%.

Table 5: Experiment results on CAIL2019-SCM task. Numbers in the first column denote the maximum cut-off
sequence length. The results are presented in terms of percent accuracy.

Model Validation Test

BERT-512 64.13% 67.77%
WoBERT-512 64.07% 68.10%
RoFormer-512 64.13% 68.29%
RoFormer-1024 66.07% 69.79%

4.5.5 Limitations of the work

Although we provide theoretical groundings as well as promising experimental justifications, our method is limited by
following facts:

• Despite the fact that we mathematically format the relative position relations as rotations under 2D sub-spaces,
there lacks of thorough explanations on why it converges faster than baseline models that incorporates other
position encoding strategies.

• Although we have proved that our model has favourable property of long-term decay for intern-token products,
Section (3.3), which is similar to the existing position encoding mechanisms, our model shows superior
performance on long texts than peer models, we have not come up with a faithful explanation.

Our proposed RoFormer is built upon the Transformer-based infrastructure, which requires hardware resources for
pre-training purpose.

5 Conclusions

In this work, we proposed a new position embedding method that incorporates explicit relative position dependency in
self-attention to enhance the performance of transformer architectures. Our theoretical analysis indicates that relative
position can be naturally formulated using vector production in self-attention, with absolution position information
being encoded through a rotation matrix. In addition, we mathematically illustrated the advantageous properties of
the proposed method when applied to the Transformer. Finally, experiments on both English and Chinese benchmark
datasets demonstrate that our method encourages faster convergence in pre-training. The experimental results also show
that our proposed RoFormer can achieve better performance on long texts task.
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